
RTES Demo 2004 L2/3 Components and Setting

 - 1 -

RTES Demo 2004 L2/3 Components and Setting

Jim Kowalkowski, etc.

1 Introduction

The purpose of this document is to identify and describe the software compo-
nents that should be present in the next RTES demonstration system. Included
are many of the component relationships and a proposal for how they might be
distributed within the system and how many might be present. The concentration
here is on trigger level 2/3.

A separate, but similar, document will address the Level-1 aspects of the RTES
demonstration system for 2004.

1.1 Rationale

Level-2/3 was chosen because the management-level experiment control and
monitoring concepts, features and software components match that of Level-1. In
other words, the software elements necessary to configure the physical and logi-
cal layout of an experiment are similar; the messaging necessary to operate an
experiment is similar. Passing messages around the system is similar. Level-2/3
is more straightforward to understand and do initial testing of tool scaling and API
testing. It is also a good way to explore further the use of GME at BTeV. We can
directly apply much of what is learned to Level-1.

1.2 Definitions

Crossing: the intersection of two "clouds" of particles, moving in opposite directions in the accelera-

tor. As these clouds move through each other, occasionally one particle from each cloud will

collide, sometimes spectacularly. The crossing rate is a constant (396 ns), determined by the ac-

celerator. For BTeV, the average number of collisions per crossing will be six. (The actual number

of collisions is Poisson distributed.)

Event: a crossing with at least one collision. Strictly speaking, each collision in a crossing is a separate

“event.” However, it is common usage to employ the word "event" (singular) to refer collectively

to all of the collisions (events), how ever many there may be, associated with a specific crossing.

Reconstruction: the inversion of a set of discrete measurements from the detector, into a complex (and

in some cases continuous) model of the physics interaction that gave rise to the discrete measure-

ments. By analogy, to convert a collection of footprints in the sand into a hypothetical scenario of

two people, and their dog, walking along the beach.

ADC: analog to digital converter; for the sake of this document, "ADC count" is synonymous with

"raw data" from the detector.

1.3 Overview

The first demonstration system emphasized cooperation to get a system running
that contained many of the RTES technologies in a BTeV Level-1 trigger-like set-

 - 2 -

ting. It had many of the correct concepts present in a simplified form with little at-
tention given to overall design issues and implementation. The next
demonstration system should go a step further by containing more functions of
the trigger and better component interfaces.

2 Goals

Why are we doing this? How do we measure success? This section needs to be
refined.

High and Medium goals will be addressed; Low/No only as time permits.

2.1 High Priority Goals

1. Demonstrate the ability of GME to accurately model components of the trigger
and predict overall system behavior when:

A. Connections between components are context dependent (no universal
protocol and API) but appear to the GME user as simple relationships
(the context dependence is hidden from user view),

B. There is a large number of components,
C. The source of trigger configuration information (algorithm modules, mode

and control constants) comes from an external source.
D. Message exchanges are not explicitly coded in a particular language in

dialog boxes
E. Trigger component physical layout, logical connections, and processing

policies are distinct and can be easily chosen and combined at run time.

Will attempt to demonstrate (at least) 5 types of GME designs:

a) run control state machines - generating Python code for local,
mid-level, and top nodes. Not hierarchical modeling. Rather, sepa-
rate models which will be used at various levels. (ABCD)

b) GUIs - at least 3 Matlab based GUIs, for Run Control (com-
mand), Monitoring (display), and Faults (to/from ARMORs, VLAs).
Easy to demonstrate user tailoring of the views. Will avoid writing
Matlab code to keep the approach non-specific. (ABD)

c) datatype descriptors - for defining messages and structures.
Generates headers, and (de)marshalling code for Elvin. Provides
integration across multiple domains: Matlab-Elvin, Run Control-
Elvin, ARMOR-Elvin, VLA-Elvin. (D)

d) system integration modeling (SIML) - overall description of the
system, to allow naming and address assignment. Does not "de-
fine" the hierarch so much as describe it (although, in a
homogeneous processor-switch environment, "describe" and "de-
fine" almost mean the same thing). Generates addresses, Elvin
router configurations. (ABCE(logical))

RTES Demo 2004 L2/3 Components and Setting

 - 3 -

e) ARMOR elements - models the types of elements (custom, stan-
dard) in use, but does not "define" custom element (i.e. can not just
draw a picture to generate code that becomes a custom element).
Generates configuration data and TCL for loading elements into
ARMORs. Supports (generates wrapper for in-line?) custom ele-
ment code. (C)

2. Demonstrate the ability to detect process failure (particularly filter program fail-
ure) and capture the data for an event in which there was a problem so that it
may be used in the nightly build / unit test suite. Further, demonstrate remote ac-
cess to support diagnosis following a detected failure.

Will demonstrate by running the demo and killing (hanging) proc-
esses. As many processes as possible will be covered by execution
ARMORs.

Will implement an Elvin logger to save messages; part of Monitor
(or Fault) GUI.

Will attempt to capture bad events to local files. But will not coa-
lesce the data. The working assumption will be that by writing data
locally, it will be easy for Dcache to make things appear to be
global/central. But for this demo, Dcache will not be implement. We
will just assume that it (or something like it) will be there some day.

Elvin messaging will provide some level of remote access. In par-
ticular, each Elvin publisher should respect a "level control" that will
determine whether any given message should or should not be
published. Capability, policy. If the Fault GUI can send Elvin mes-
sages to individual Elvin publishers, specifying individual "levels",
then the operator will be able to turn up the volume from any se-
lected node or process. Dynamically controllable remote
monitoring.

Custom ARMORs may implement a fault-management hierarchy.
Custom ARMORs may control VLAs. Custom ARMORs should
communicate (to VLAs, to GUIs, to RC, to other Custom ARMORs)
via Elvin.

11. Demonstrate scalability, or at least indicate the expected behavior as the sys-
tem is scaled to full size.

Can demonstrate by adding nodes in Harry's farm, and by (specific)
"experiments" on Vampire (developed elsewhere, but run for nu-
merical results on Vampire).

Test message control and channel limits. How much can we afford
to send as Elvin messages. Experiment with hierarchy, to deter-
mine how many (layers of) Elvin routers are needed. Show cost,
and how costs scale with system size. Show message traffic, and
how that scales with system size.

 - 4 -

Demonstrate consistency between physical system and NS2 simu-
lations.

2.2 Medium Priority Goals

3. Demonstrate use of standard protocols and APIs between components.

By consistent use of rtes_ abstractions. No higher level code
should use TCP or Elvin “raw”.

5. Characterize ARMOR and Element performance.

Studied by running the demo. Demonstrate 10% (or less) resource
consumed by RTES infrastructure

6. Demonstrate manual and automated removal of a worker for various hardware
failures.

Manual control via Fault GUI, etc. Kill process, hang process (re-
quires processes to subscribe to "please hang yourself" Elvin
messages), hang node (may require ARMOR daemon to subscribe
to "please hang yourself").

Automated behavior - ARMOR will try to restart crashed/killed
processes. ARMORs will migrate in response to a failed node. Hot
spare nodes to be identified by SIML/GME picture; list provided to
FTM (ARMOR).

Will not try to reboot hung machines.

9. Present precise APIs and encourage correct coding.

Steve will (continue to) make this happen. At least correct coding…

10. Show adoption of a coherent build system that allows for library and system
releases and nightly unit and integrated testing.

By using CVS and makefiles for GME (Windows side); UDM (Win-
dows/Linux side).

Anyone should be able to build the runtime demo system on any
appropriately prepared Linux platform: VU nodes, Harry's farm, or
equivalent. Note that "prepared" may involve a nontrivial amount of
3rd party installation; this "preparation" will not be automated.

Anyone should be able to build/edit/generate-python-or-matlab
GME diagrams on any appropriately prepared Windows platform:
Mike Haney's laptop, other. Note that "prepared" may involve a
nontrivial amount of 3rd party installation; this "preparation" will not
be automated.

RTES Demo 2004 L2/3 Components and Setting

 - 5 -

2.3 Low Priority Goals

7. Demonstrate workers migrating from a partition from another as a run pro-
gresses and processor utilization drops. (Alternatively, demonstrate changing
work-load assignments, controlled by trigger-need.)

Not with respect to partitions or load balancing. Simulations (e.g.
NS2) will study load balancing and task prioritization. No migration.

2.4 No Priority Goals

The following will probably not be done

4. Demonstrate dynamic construction of an experimental run (filter configuration
and error handling policy choice).

Without a "real" L2 filter, and physicist support, this goal is not prac-
tical. We might demonstrate how Run Control can pass information
(configuration) to the filter app. And we will have startup scripts for
the execution ARMORs to follow. But these scripts will probably not
be generated by drawing pictures in GME.

8. Demonstrate the ability to record run activities (during an experiment) in a da-
tabase for later playback postmortem analysis.

As (part of) a mitigation, effort will be made to capture bad events
and place them into a file. Playback, however, is not part of the
plan. That would require a "real" L2 filter to be meaningful. Play-
back will be implemented when we revisit the ITCH and Source and
provide real implementations for them.

3 Level 2/3 Diagrams

3.1 Inside the Filter Program

A filter program receives events (crossing results) one at a time. The event con-
tains data from a single crossing from within the detector. These data are
composed of blocks – one block from each of the subdetectors that are active in
the system. The data can be thought of as ADC counts for detector cells that
contain reading within a configured range. The event passes through a sequence
of reconstruction algorithms (e.g. turn ADC counts into energy values and parti-
cle trajectories), followed by a decision sequence that is used to determine if this
event has enough interesting physics in it to keep.

The diagram below shows some of the important components that will be present
in a Level-2/3 program. A software framework allows these components to be
plugged in and work together. The solid arrows represent real dataflow; the
dashed arrows show logical flow of control and only appear in the trigger algo-

 - 6 -

rithm path. A service is a component that can be used by any other component in
the system whenever it wants. An event passes through the algorithm compo-
nents; there may be several . Modules perform a function similar to algorithm
components on events. BTeV currently has a simple prototype software frame-
work and event data library.

The event path: An event enters via the event stream input module, which
unloads or transforms portions of the data into structures used by algorithm com-
ponents. The event is a complex database-like data structure. Pieces can be
added to the event by name and pieces can be queried. The event is pushed
through the algorithm components in the trigger algorithm path until a decision is
made to accept or reject it. The detector information is highly packed; an algo-
rithm will first uncompress the data. A rejection can happen early on, removing
the need for all the algorithms to run. A final decision is made looking across the
individual trigger paths (bit-wise OR for example). Events that pass are com-
pressed or packed at the output module and written to output files depending on
what trigger paths accepted the event. Periodically event files are sent to perma-
nent storage. The event path shown in the diagram shows an extremely trivial
trigger path. BTeV currently has a working prototype of the L2 pixel algorithm.

Data quality monitoring: As events flow through the filter program, the trigger
algorithms keep statistics. The monitor data service is the keeper of these data
structures and memory. At regular intervals, announcements are made through
the control unit that statistics should be written out. BTeV currently has a proto-
type monitoring services based on the ROOT and HBOOK packages. [Question:
are these centralized or distributed services?]

Problems: If problems or unique situations are found in the data or logic errors
are detected by the trigger algorithm components, the components write informa-
tion to the error logger service. The error logger service can synchronously
deliver the message to another program [I suppose ARMOR-s can listen to these
error messages?]. In general, trigger algorithm components do not determine
themselves if things they discover are actually errors – it is up to the configura-
tion of the control unit or the program that is hooked up to the error logger to
determine if the situation is really an error. BTeV uses the Fermilab/CD devel-
oped ErrorLogger package.

Configuration and control: The configuration service organizes complex con-
figuration information into data structures that are used by each component in the
program, including the control unit. Each of these components will most likely
have a large set of unique parameters. As the system runs, this service may be
notified of system state changes, such as run segment change, stop of run,
pause of run, start of run, calibration set ready, or increase debug level. BTeV
currently only supports initial configuration using the Fermilab/CD developed
package called RCP.

Other Services: The calibration/geometry services will most likely be skipped for
this project. All the algorithms will need calibration constants that describe how to
turn ADC counts into correct and meaningful physical quantities (characteristics

RTES Demo 2004 L2/3 Components and Setting

 - 7 -

change with weather and beam exposure). They also need to know precisely
where parts of the detector are (they move, sag, and change over time).

3.1.1 Required R&D

Incomplete.

1. "real" or dummy L2 and L3 algorithm code needs to be secured from BTeV
sources.

2. Control unit. This element coordinates the execution of the trigger filter algo-
rithm components. Keep in mind, that while the discussion above, and figure
below, focuses on only the "L2" and "L3" components, the control unit must ac-
commodate any number of conditioned-sequential, as well as unconditional
components. This means both that there may be N (not necessarily 2) compo-
nents, and the execution of component "i" may depend on "i-1", or may not. An
interface to the ControlUnit must be defined that allows dynamic insertion of algo-
rithm components in the control path.

3. the nature of the configuration data needed by the L2 and L3 algorithms needs
to be characterized, and saved in a file or database. A formal mechanism for ex-
posing the L2 and L3 configuration "hooks" must be developed. The
configuration service must then be developed in a manner that allows changes in
L2/L3 configuration needs to be satisfied exclusively through changes in the al-
gorithm code, and in the configuration file/database. If done correctly (e.g. data-
driven), the configuration service itself should never require recoding.

4. placeholders for the other services (geometry, calibration, file writing) should
be created. While the body of code in these placeholder may be minimal, the in-
terfaces should be fully developed.

5. the monitor data service and event logger service may be profoundly similar;
careful consideration of class definitions should be made to maximize the code
(class) sharing between these two. Need to carefully consider the distribution as-
pect of these services. A concerning aspect is how the service data from
individual worker nodes is collated together, and the fault-tolerance properties of
the “merge” node of the service data. The FT infrastructure may need to insert
collation routines in the services based on the fault conditions, or even may need
to have read interface to service data in order to make assessment regarding po-
tential fault conditions.

 - 8 -

L2 Algo

Phony

L3

Algo?

Event

Stream

Input

Module

File

Writing

Module

Error

Logger

Service

Control

Unit

Monitor

Data

Service

Configuration

Service

Trigger

Path

Control unit routes

the event through

the algorithms in

the path, it is

responsible for

creation and

configuration of

the algorithms and

paths

Anything

labeled service

can be used by

any facilities at

any time

Geometry

Service

Calibration

Service

Figure 1: Inside the Filter Program

3.2 Inside a Worker

A worker node will most likely run one filter program instance per CPU. The
worker also contains processes to move data and configuration on and off the
node, and processes to start and stop programs and detect and respond to er-
rors. Passed events and statistical information flow into temporary files on the
node.

Event Builder: Event data will arrive at a single point (called an event builder – a
separate executable) within the node. If data arrives in fragments, the event
builder will coalesce the fragments into a whole event before dispatching it to one
of the filter instances. The event builder will maintain a short queue of events,
enough to keep the filter programs busy as much as possible. The event builder
knows the protocol for requesting and receiving events. When the queue falls be-
low an acceptable level, the builder requests one or more events to be
transferred from the Level-1 buffer to this node.

Configuration/Data Movement: This is a caching/database tool used to effi-
ciently transfer things such as executable versions, configuration sets, and
calibration data from the central repositories for quick access during data taking.
The information appears as a large virtual file system. Other processes on the
node trigger the transfers. This subsystem may also be used to migrate data and
statistics off the processor to a permanent store.

RTES Demo 2004 L2/3 Components and Setting

 - 9 -

Run Control: This program manages the state of the node. It starts and stops
programs depending on the state on the trigger. It receives instructions about
what versions of executables to run and what configuration sets they require.

Filter Program: This was described in the previous section. It is important to
recognize that a typical worker node will have 2 CPUs and hence will have two
instances of the filter program (one per CPU), as shown in the figure below.

Fault Handling: This part of the system includes processes that watch other
running programs and periodically report node health to other supervisor nodes,
and processes that actively watch or monitor conditions in the machine or run-
ning application to make sure everything is operating smoothly. This subsystem
will need to get system performance and health information from lower-level
components.

3.2.1 Technology Choices

Data Movement: It is possible to use the product dcache or fake it with NFS.
The advantage of dcache is that it provides a pseudo-filesystem where parts of it
can be faulted in from unrelated technology (e.g. RDBMS or tape robot).

Statistics Cache: Most likely the information contained here will be in ROOT
format (Histograms and Ntuples).

Filter Program Configuration: The RCP library (Fermilab Computing Division
product).

System Monitoring: Ganglia is used by quite a few of the farms at Fermilab for
recording things like process CPU/memory usage, network usage, and disk us-
age. PAPI provides an API to access the Intel/AMD on-chip high performance
event counters. Oprofile can be used to record performance information about
particular processes. Linux-trace is a Fermilab product that uses high perform-
ance kernel ring buffers to record kernel activities. It has logic analyzer-like
triggers that allows snapshots of activity to be recorded based on programmed
events. LM sensors provides an API to access the CPU/case temperature and
fan speeds.

3.2.2 Protocols and IPC

Event Builder to Filter Program: The typical complete event could be as large
at 250KB. Event buffer management should add as little overhead as possible to
event processing. One method to accomplish this is to create a shared memory
area between the Event Builder and the filter programs and then use messaging
to coordinate access to areas of this shared memory. In other words, the com-
munications here will be something efficient and custom for this application. The
protocol must allow reconnection without restarting all players if a filter program
crashes. A combination of Unix pipes, memory mapped files, and semaphores
may be appropriate.

 - 10 -

The following example implementation is offered not to define the solution, but
only to illuminate the requirements. This example solution may or may not be op-
timal.

Consider a collection of 10 memory mapped files, each representing one "slot",
and suitable for holding one event. The Event Builder is the only application
which can write into these files; each of the filter program instances can only
read. The Event Builder maintains a simple scoreboard to track the status of the
slots; the scoreboard is also a memory mapped file.

The Event Builder pulls data from the L1 buffers, and arranges the various frag-
ments (BLOBs) into a slot. When the entire event has been assembled, the
Event Builder marks the slot as "ready" on the scoreboard, and if there are "too
many" (configurable limit) other "empty" slots, the Event Builder proceeds to fill
the next.

FilterProgram_1 completes processing, and messages the Event Builder to indi-
cate completion and availability for a next assignment. The Event Builder knows
(from the scoreboard) which slot had been assigned to FilterProgram_1, and
marks this slot as "empty". The Event Builder then selects a "ready" slot,
changes the scoreboard to read "assigned to Filter_1", and sends a reply mes-
sage to FilterProgram_1 indicating which slot has been assigned to it.
FilterProgram_1 then draws data from that slot, as it wishes. Upon completion,
the cycle repeats.

If FilterProgram_1 crashes and restarts, it will send a message to the Event
Builder asking for a first assignment (as opposed to the completion of a previ-
ous). The Event Builder recognizes, from the scoreboard and the first request,
that FilterProgram_1 must have crashed. The Event Builder marks the slot as
"reassigned to Filter_1" and sends the reply to the filter program. If the filter pro-
gram crashes again (detected as a first request and an already reassigned slot),
the Event Builder declares the event to be pathological, and forwards it to the
Fault Handler for possible inclusion in the collection of test cases for future use.

[Sandeep: This sounds like a specific fault-mitigation behavior, a specific way of
dealing with crashes related to data, shouldn’t this be handled in a more coordi-
nated manner with FMs/ARMORs/VLAs] [Mike: yes, somewhat… The Fault
Handler is the VLA/ARMOR domain. Forwarding the event to the Fault Handler is
essentially the same as sending a message to the VLA/ARMOR (ok, I'm reaching
here). But remember, this is just an example to promote discussion. Neverthe-
less, I added the word "possible" to take the edge off of the specific resulting
action.]

If the Event Builder crashes and restarts, it will understand the state of the sys-
tem from the scoreboard (memory mapped file). It may be the case that the
scoreboard is not perfectly accurate, depending on when and how the Event
Builder crashed (e.g. whether a "flush" succeeded to write from memory to disk).
The Event Builder will act in good faith, based on the state of the scoreboard.
This may result in some lost events. Note that it may be advisable to mark the
scoreboard to indicate the slot "being filled" with data from the Level-1 buffers.

RTES Demo 2004 L2/3 Components and Setting

 - 11 -

Following a crash, that slot will be forfeit, and that event can be recognized as
lost.

Into the Event Builder: A simple, efficient messaging library would be appropri-
ate. PVM may work if it has good fault handling characteristics, such as
reconnection upon communication failure or the master event distributor capable
of coping with a worker node leaving or coming back into the system. A really
simple version of CORBA ORB may actually work also. There is a project the out
of the LHC experiment for doing this sort of thing (I had forgotten the name,
Dinker knows the product). I remember it being a multi-channel system.

Standard Message Interface for Controls: The remaining links could use a
trigger-wide messaging system. This includes Error Logger to Fault Manager, fil-
ter program Control Unit to Run Control, Run Control to upper-level Run Control,
and Fault Manager to Run Control. This message passing can be slower and al-
low for more flexibility, lower coupling, and multiple language support. The
computing division supports a few libraries: D0 message passing library (C++),
Merlin (Luciano). A solution based on XMLRPC or SOAP may work well also.
(There will be another document to discuss message passing in more detail.)

Notification: Perhaps this can be handled with the protocol/IPC discussion ear-
lier, however I would recommend adoption of a common/unified notification
service, with the ability to multicast (within the same node). Reason being there
may be events such as run completion, which multiple programs on the node
would be interested in knowing about.

3.2.3 Required R&D

Incomplete.

1. dcache

2. ganglia

3. shared memory event store, and scoreboard

4. notification service, publish/subscribe

 - 12 -

Event

Builder

Shared

Memory

Event Store

to ITCH,

from event source(s)

second filter program instance

(BTeV Framework prototype +

L2 algorithm)

first filter program instance

(BTeV Framework prototype +

L2 algorithm)

Statistics

(file system)

State

Management /

Run Control

(custom program)

Config Data/

Program

Movement

(Dcache)

Fault Handling

(ARMOR)

Program/

Configuration

Cache

(file system)

hardware

interfaces

(LM sensors)

System

Monitoring

(Ganglia)

Application

Performace

Monitoring

(PAPI,oprofile,

Linux-Trace)

Core System

Services at

Boot

Temporary

Event Cache

(file system)

to next

tier fault

system

to next

tier control

system

to

information

database

Figure 2: Inside an L2/L3 Worker Node (Processor)

3.3 A Proposed Setting

Multiple event sources mimic the trigger’s Level-1 buffers. The real system will
have one crossing (an entire event) spread over each of the L1 buffers (a frag-
ment per BTeV sub-detector). We do not need to mimic this behavior on day one.
We can move to it at a later time. Workers (i.e. the Event Builder in each worker)
request events via the event distribution manager (ITCH). The distribution man-
ager pulls data out of the buffers. This is somewhat difference than the current
BTeV plan, which is for the ITCH to just make routing decision and let the buffer
push data directly to worker nodes. Event data flows through the workers and out
to the permanent store. In this demonstration, a single, large database contains
all the information necessary to perform an experimental run – including execu-
tables, configuration, partition assignments, routing assignments, and fault

RTES Demo 2004 L2/3 Components and Setting

 - 13 -

management geography data. Included is a hierarchy of controls, monitoring, and
fault handling.

Event Source: Have a large set of events that will exercise various aspects of
the system, including use of network bandwidth, CPU usage, and trip errors in
the filter programs and utility programs in the main data path. The events can
come from BTeVGEANT (BTeV detector simulation program) or be random data
with a header describing the properties that it would have. The GEANT events
can be made with qualities that will cause problems in the L2/3 filter algorithms.

ITCH: These machines connect the buffering machines in Level-1 to the nodes in
Level-2/3, and perform the function of event distribution. Nodes in Level-2/3 will
demand crossing data when they need more work. The ITCH will either tell the
L1 buffer where to deliver data or collect the data and send it to the node. The
latter may allow for more predictable resource use (network and memory on the
buffer nodes).

L2/3 Processing Elements: These are the main workers running the filter pro-
grams described in previous sections. Depending on the system load and the
test being run, an actual node can be configured to run one or more processing
elements (workers).

Managers: A set of nodes, each in charge of a group of workers (processing
elements). Functions such as administration, configuration commands, state noti-
fications and management, and fault management will utilization these nodes.
Watching for problems or trends across large areas of the trigger will require use
of these nodes. We will define a hierarchical organization with 3-levels of hierar-
chy (Global, Managers, and Workers), the manager described here can be
identified as a manager of a region of workers. In order to identify trends across a
region, the manager will need access to region wide information: this includes
monitor data/statistics, error log data, etc.

Global Trigger Manager: In the management hierarchy, this is the head node.
This is the main gateway for control and management in the trigger. This node or
set of nodes will know the protocols to talk with external systems.

Database Interface: This is the subsystem that manages access to information
stored in databases, repositories, or external file systems. The databases contain
information such as trigger configuration information, experimental run histories,
node status data, and performance data. In this demonstration, we will need to
simplify this. One way to simplify this is to remove as many DB queries as possi-
ble and provide information to workers and other subsystem in the file format it
expects. The transport can probably start out as NFS, but later should move to a
subsystem with caching behavior, such as dcache. This part of the system
should not be used to inform systems of information that flows through the con-
trol system (e.g. state changes or announcement of what configuration to use).
This system should not be used as a place to track things that change dynami-
cally. The primary purpose, right now, is to allow programs on the workers to
efficiently begin execution at the start of an experiment (a run) – without worrying
about swamping the network of database component a run start. We want the

 - 14 -

workers to stage or cache information that is frequently used across runs or in-
formation needed for the current run before the run actually starts. If NFS is
used, then there will need to be a separate set of programs that populate the
NFS area with programs and other important data from other sources like the
CVS repository or release build area. If dcache is used, we may be able to install
a set of routines that get triggered when cache faults occur. Dcache also man-
ages the disk space you give it like a real cache. A real system may also allow
more than just a file system abstraction – something like ad hoc SQL queries will
probably be necessary also. This is something to discuss: should there be a da-
tabase query method directly from the workers or should be controls/monitoring
system message channels be used?

DAQ Element: The DAQ system will have many programs that can and will ac-
cess the trigger for varying lengths of time. A run control daemon will most likely
always be connected. A diagnostic program will connect for short periods of time.
A monitoring program may connection periodically to take some performance
measurements. The DAQ element represents a program that talks to the trigger
directly. This involves authentication and known constraints on resource use.

Monitoring Interface: This is the GUI that control room personnel use to watch
how well the system is performing and where they get notified of errors or prob-
lems.

Run Control Interface: This is the GUI that is used to configure and operate an
experimental run.

Analysis: This is the set of tools used to do post mortem analysis of a run or
compare performance data between two runs or to locate trends across runs.

3.3.1 Technology Choices

The management elements should use the same technology as the worker ele-
ment state management program. Luciano (from the DAQ group) may have
made some choices regarding the DAQ elements. We discussed using Matlab
for all GUIs and analysis. We discussed starting with NFS to start out the data-
base interface, knowing that this will be inadequate. The connection to the event
sources should be the same as in the connection from the workers to the ITCH.

3.3.2 Protocols and IPC

The only new link introduced here is from global trigger manager to DAQ ele-
ment. The default should be to use the same protocol as the management
elements.

3.3.3 Required R&D

Incomplete.

1. Matlab for the RunControl and Monitoring interfaces

RTES Demo 2004 L2/3 Components and Setting

 - 15 -

2. ITCH, Event source, event data set. Note that to get started, these can be
combined into a single process (with a file containing a trivial number of events
worth of data), and later elaborated into the multimode solution called for in the
figure below.

3. database interface. Care should be exercised in allocating development effort
to this task, as BTeV will almost certainly make choices which will not be identical
with RTES. Therefore, the demo solution should be generic, and simple.

Collector

GRID Batch

Submissions

Run Control

Interface
Monitoring

Interface

DAQ Element

L2/3 Node

L2/3 Node
L2/3 Node

L2/3 Event Filter

Elements

Event Source

Event Source

+ Buffers

One Event builder

per element.

Two Filter programs

per element.

Manager

Node

DAQ Element

Outside World

Inside the Trigger

Manager

Node

Manager

GRID Batch

Submissions

(?)

Repository

Database

Interface

(Dcache/

SQLRelay?)

ITCH

(Event Distribution

Manager)

4 processes

on 4 CPUs on

2 nodes

18 Nodes,

36 CPUs

Global Trigger

Manager

1 cpu

Monitoring

Interface

(Matlab)

Run Control

Interface

(Matlab)

Physics

Results

Collector

2 process on

2 CPUs

Large number

of BTeV

Simulated

events

One event is

split up amongst

all sources

One connection per element

to each ITCH process

One connection per event source

to ITCH each process

crossing requests

event fragments received and

collected

3 nodes

Data

Command/

Control

Shared object modules

Data catalog

Programs

Configuration scripts

Component locations

Partition assignments

Error and action history

Experiment history

Calibration/alignment data

Monitoring histogram and ntpules

Performance measurements

Analysis

Figure 3: Overall System Architecture?

4 System states.

Incomplete.

 - 16 -

5 Fault Models

The following fault models should be considered:

1. process crashes. Any process can crash; every process should be restartable.
Execution ARMORs should be employed to cover almost everything… It would
be desirable to be able to (remotely) poison any process to cause it to crash (as
opposed to "ps -ax; kill -9"). Alternatively, a "grim reaper" script might be devel-
oped (to seek out by name, and terminate).

2. process loops. Especially in the filter algorithm(s), a(ny?) process can simply
loop. This is not the same as a crash, although the recovery following detection
may be equivalent.

3. bad connections. Event source to ITCH; ITCH to workers; workers to manag-
ers; workers to database; manager to DAQ/monitor/RunControl. It would be
desirable to corrupt messages, and/or break channels in each of the above
cases.

4. disk and database failures. Corruption, or simple loss of service.

5. worker node crash: an entire worker node crashes

6. manager node crash:

6 Relationship to a new Level-1 Project

Incomplete.

At this time, the L2/3 demonstration system is fully independent from any Level-1
project, past or present.

However, if resources are available, it should be relatively simple to allow Level-1
accept/reject messages to be sent to the ITCH, which in turn will simply alter the
apparent event number of each event to track with the Level-1 activity. The ac-
tual data drawn from the event data set would be the same, regardless of Level-
1, and every event from that set would be processed; the ITCH would not throw
away data. However, through the expedient of creative labeling, the L2/3 system
would "see" a discontinuous series of event numbers, corresponding to Level-1
accepts.

VLAs: there is one cross-over between Level-1, and L2/3 that merits discussion.
It has been proposed that the Level-1 VLA solution find a way to capture and re-
port the value of the program counter, and/or contents of the stack, in the event
of a DSP worker crash. The monitoring interface at the top-most level will then
decode this information (from a symbol table) to indicate, by name, what the
worker was doing at the time of the crash. As the VLA concept is platform inde-
pendent, it may be appropriate for the equivalent VLA solution (report-on-crash
the node, process name, stack-trace, etc.) to be developed for the L2/3 demon-
stration system.

RTES Demo 2004 L2/3 Components and Setting

 - 17 -

7 System Modeling

One of the key issues identified by the reviewers in the use of modeling tool, was
a single model for the entire system, which makes it non-scalable, difficult for
multi-user edits, and difficult to version different parts of the model. Another chal-
lenge arises from the fact that there is not a single unified component model that
spans the entire system. A component model essentially defines what it means
to be a “component”, what are its interfaces, and how components interact with
each other. In the BTeV Trigger system, in general, and the L2/L3 demo system
in particular there are many definitions of a component, and many different styles
of interaction between components, for ex: an Event Builder, and a Filter Pro-
gram, both are components which execute concurrently and interact through a
specific protocol, which involves the asynchronous data transfers via shared
memory, and notifications of processing completion; within a Filter Program, also
there are several components which execute sequentially coordinated by a con-
trol unit, and exchange data in a pipelined fashion; the RunState manager is also
another component that supervises/coordinates the execution of other compo-
nents by sending start/stop notifications.

This makes it difficult to design a modeling language that addresses all the com-
ponent models. Having a single grand-unified modeling language is clearly a
non-scalable solution.

We propose a two-pronged approach to address this situation. We design differ-
ent narrowly focused modeling languages for different component models, for ex:
State-Machines for modeling mitigation behaviors, Dataflow modeling for the in-
ternals of the Filter Program, ARMOR element-interaction modeling for ARMOR-
s. Individual components can be modeled using these modeling languages and
these models are stored in separate models/files, which allows multiple users to
independently developp/evolve/maintain/version these models. We also define
an abstracted System Integration and Monitoring Language (SIML). This ab-
stracted language shows the overall hierarchical organization and interaction, of
the system components. Note that components will have a fairly loose definition
in this language. The concrete models of these components, which could be
GME models in the modeling languages listed earlier, or it could be just source
code, are linked in to the abstract system model, through file system paths, and
model object ids (or code references e.g. class name, function name, …). We
use file system paths relative to the CVS module directory, for links. We can also
provide GME plug-ins for creating links, and even displaying linked models/code.
The SIML also allows capturing the debug/monitor information of a component,
for ex: a State-Machine component would have a ‘CurrentState’, ‘TimeInCurrent-
State’, ‘StateHistory’, type of monitor elements, a Hardware (CPU) component
would have a ‘CurrentTemp’, ‘CurrentUtilization’ etc. type of monitor elements.
The idea is that during system operation a user should be able to drill into the
system hierarchy, and ask for status update on the component. A GME plug-in
queries the MonitoringData service for this information using the ID of the com-
ponent, and animates it on the models. The model updates could be on-demand,
or periodic refresh.

 - 18 -

From a versioning and maintenance perspective the idea of using file/model links
is a potentially viable one. Take for example the LFM behavior from the SC2003
demo. This and all other behaviors were modeled in a single model file which
was in a different location from the component directory in the CVS. With the
idea proposed above we can create one model for each behavior, store it as an
XML file in the appropriate component directory. The interpreter (command-line
form of interpretation is available) invocation could be integrated with the Build
process, such that during the build the model is interpreted, its code generated,
and the code is compiled.

8 Conclusion

Summarize the important points.

